

Towards a Sustainable 6G

Marcos Katz

Centre for Wireless Communications

University of Oulu, Finland

6G Global 2023

November 1-2,

Seoul, Korea

Contents

Brief Introduction to the 6G Flagship Program

- Towards a Sustainable 6G
 - A Holistic Approach to Sustainability
 - An Example: The SUPERIOT Project

Facts sheet

- National research flagship for 2018 2026 with a total volume of 250M€.
- 2nd phase started May 2022 plan to continue until the end of 2028.
- Operated by University of Oulu.
- Currently involves 500 researchers from 50 nationalities.
- Steered the first 6G visions work via
 13 6G White Papers (downloaded over 1M times).
- Published 2640 per-reviewed papers and 89 doctoral theses.
- Over 400 company collaborators and more than 400 research projects so far.

UNIVERSITY OF OULU

Overview

6G Flagship Vision for 2030

Data-driven sustainable future society enabled by near-instant, unlimited wireless connectivity

6G Playground

The first-ever 6G white paper came out in 2019. Since then, other white papers have envisioned various future scenarios.

The 6G research visions will take you on a journey to explore the possibilities and imagine the opportunities in the 2030s.

READ MORE ON OUR VISIONS

Follow Us

6G Waves Magazine

6gflagship.com/ 6g-waves-magazine

6G Research Visions

6gflagship.com/ white-papers

EuCNC & 6G Summit

eucnc.eu

6G FLAGSHIP

Towards a Sustainable 6G

Wireless Communication Systems & Sustainability

Wireless Communication Systems

Wireless Communication Systems for Sustainability

Sustainable Wireless Communication Systems

Wireless Communication Systems & Sustainability

Wireless Communication Systems

Wireless Communication Systems for Sustainability

Wireless
Communication
Systems
as a Part of the
Solution

Sustainable Wireless Communication Systems

Wireless
Communication
Systems
as a Part of the
Solution

Towards Truly Sustainable Wireless Communication Systems 6 G

Wireless Communication Systems and their relationship to Sustainability

- What do we mean by sustainable wireless communications or in general sustainability when referring to wireless communication systems?
- Energy efficiency, low-power solutions, energy harvesting, spectral efficiency, etc.
 are important aspects of sustainable communications.
- In the past, we referred to this as green communications.
- How do we approach sustainability today? Sustainability needs to be approached from a wider perspective.

Creating a Truly Sustainable Wireless Communication System

A holisic approach to sustainability needs to be considered, taking into account all the stages of the life of a wireless communication system.

Creating a Truly Sustainable Wireless Communication System

Sustainable by Design

- Energy-Efficient Communications
 - Link-level: modulation schemes, resource allocation, passive communications, wireless energy transfer, etc.
 - Network-level: MAC protocols, resource allocation, routing, wake-up techniques, wireless energy transfer, etc.
- Spectral-Efficient Communications
 - Link-level: modulation schemes, resource allocation, etc.
 - Network level: frequency reuse schemes, resource allocation, etc.
 - Optical wireless communications
- Architecture: sustainable network selection, etc.

Creating a Truly Sustainable Wireless Communication System [5]

Sustainable by Implementation

- Implementaion based on environmental friendly technologies
 - Use of common components
 - Use of printed electronics/biodegradable electronics
 - Use of abundant materials/elements
 - Use of ecological and durable parts
 - Use of recycled/recyclable parts
 - Avoiding the use of elements from conflict areas
- Implementation based on sustainable manufacturing techniques
 - Minimize environmental impact by
 - Operational efficiency by reducing costs, energy and waste
 - Energy and (natural) resource efficiency
 - Less pollution, emission, waste

Creating a Truly Sustainable Wireless Communication System

Sustainable by Usage

- Sustainable Operation
 - Renewable energy sources
 - Energy autonomous solutions (batteryless operation) ← sustainable design
 - Energy-efficient and low power solutions — sustainable design and implementation
 - Maintenance-free operation, remote maintenance
 - Modifiability / Reconfigurability

Sustainable Disposal/Reuse

- Environmentally-friendly electronic waste
- Repurposability
- Sustainable recycling

Creating a Truly Sustainable Wireless Communication System

- Methodologies for Developing Sustainable Communication Systems need to be developed
 - Developing wireless communications systems (or key parts of them) that are sustainable by design.

Holistic approach to sustainability:

- 1) sustainable by design, 2) sustainable by implementation,
- 3) sustainable by usage, 4) sustainable disposal

Methodologies for Sustainability Assesment:

- Developing metrics for sustainability.
- How to measure sustainability in a communication system or part/functionality of it?
- How to measure the impact of wireless communication systems on sustainability?

Sustainability and Standards

6G FLAGSHIP

Example: The SUPERIOT Project

SUPERIOT in a nutshell

Project fact sheet	
Project number	101096021
Project name	Truly <u>Sustainable Printed Electronics-based IoT</u> Combining Optical and Radio Wireless Technologies
Project acronym	SUPERIOT
Call	HORIZON-JU-SNS-2022
Topic	HORIZON-JU-SNS-2022-STREAM-B-01-03
Type of action	HORIZON-JU-RIA
Project start date	1 January 2023
Duration	36 months
Total EC funding	4 757 739.50 €

unec

Partnership: 10 partners, 1 associated partner

Involved countries: Belgium, Finland, Germany, Netherlands,

Poland, Portugal, Spain and United Kingdom.

The SUPERIOT Approach

- SUPERIOT offers a unique holistic approach to sustainability
 - Sustainable by design
 - Batteryless IoT devices, exploiting existing lighting infrastructure, highly flexible and adaptable, reconfigurability, similar solution can be used in different scenarios with different requirements, secure and reliable by design, etc.
 - Sustainable by implementation
 - Node design based on the use of printed electronics technologies.
- The concept is based on the use of both radio and light technologies to provide
 - Dual mode wireless connectivity (high performance, secure, reliable connections)
 - Dual mode energy harvesting (energy autonomy)
 - Dual mode positioning (robust and accurate localization)

SUPERIOT: Basic Principles

Sustainable by design Key advantages

Multi-mode **communications**: light- and radio-based wireless connectivity

1 performance, adaptability, flexibility, energy

efficiency

Multi-mode energy **harvesting**: light- and radio based

energy autonomy, reliability

Multi-mode **positioning**: light- and radio-based

robustness, accuracy

Reconfigurability: at node and network levels

adaptability, flexibility, repurposability,

security, reliability

Sustainable implementation: printed electronics technology (node)

5

Sustainable use: smart energy harvesting and management,

batteryless IoT nodes, reconfigurability

Sustainable disposal: printed electronics technology (node)

SUPERIOT: Initial prototypes

Batteryless light-based IoT nodes @ CWC

- Printed electronics used in the implementations of the IoT nodes (e.g., printed solar cells, printed displays)
- Operation in downlink (visible light) and uplink (IR light)
- Sensors integrated in the design
- Additional printed components will be used in the project

SUPERIOT Demonstrators

 Small reconfigurable IoT node (Hybrid technology)

2) Advanced IoT network for medical ICT scenarios

3) Small limited-capability IoT node (printed technology)

4) Large-area IoT node

The SUPERIOT Visions

Sticker-like printed IoT node

- SUPERIOT will develop a future-proof concept, paving the way towards novel technologies. In the next decade, we might see:
- Fully-printed reconfigurable optical-radio IoT nodes

- Extremely inexpensive nodes (e.g., one-cent node)
- Environmentally-friendly disposable
 IoT nodes: use of biodegradable electronics, etc.
- Novel scenarios/use cases:
 - Massive sensing & massive actuation
 - Inside the human body
 - Underwater
 - Mining, etc.

Conclusions

- Sustainable wireless communications is an emerging research area with high-impact in different areas.
- In order to develop truly sustainable wireless communication systems, we need to approach sustainability from a wider perspective and in a holistic manner.
- A clear and all-encompasing definition of sustainability for wireless communication systems as well as metrics to quantify sustainability are still missing.
- Creating truly sustainable communication systems could be seen as one of the key challenges for the future.
 - IoT could be used as an initial realistic target communication system to be developed as truly sustainable.

More than wireless.

6GFLAGSHIP.COM • #6GFLAGSHIP

